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ABSTRACT

Optical Interferometry has long been limited by low SNR making it nearly impossible to measure the small
visibilities required to make resolved images. Although the SNR exists in the raw data, much SNR is lost in
the conventional squared-visibility processing. In modern interferometers fringes are recorded simultaneously at
many wavelengths and baselines. This makes phase-referencing possible, which is the key to coherent integration,
which in turns can greatly improve the SNR of measurements, making small-amplitude resolving measurements
possible. In this paper we will detail the theory of coherent integration. We will also explain why coherent
integration should, in most cases, be carried out during post-processing in software rather than in real-time in
hardware. We will then compare it to conventional processing approaches for some data from the Navy Optical
Interferometer. We will demonstrate how coherent integration can improve the accuracy of observations.

1. INTRODUCTION

At visible and infrared wavelengths the atmosphere
has a short coherence time of only a few millisec-
onds. Without strong active fringe tracking the fringes
will move out of the range of the the beam combiner
on a time-scale comparable to the coherence time. In
many cases this time is too short to obtain sufficient
signal-to-noise ratio for useful astronomical analysis. In-
stead many short observations, which freeze-frame the
fringes, must be recorded and combined somehow. The
traditional approach is to average the power spectrum
of the fringes, which requires a bias subtraction. The
bias that must be subtracted goes as 1/N where N
is the number of photons recorded in one integration.
For fainter targets the bias that must be subtracted is
larger, and for targets with small visibilities the relative
size of the bias to the signal is also large. Subtracting a
large bias to obtain the astronomical quality degrades
the SNR. In cases where NV 2 is small (typically smaller
than unity), the degradation is large.

There is an alternative. If the individual exposures
can be coherently averaged without a power-spectrum
calculation the bias subtraction becomes much smaller
because the noise is much smaller when squared visibil-
ities are computed after long integrations.

Figure 1. Signal-to-Noise ratio for coherent and incoherent ob-
servations of the same total duration. The green curves show the
incoherent averaging SNR whereas the red curves show the co-
herent integration SNR.1
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2. COHERENT INTEGRATION

Coherent integration means to integrate for a long time
on the fringe while stabilizing the phase. The integra-
tion can be made long enough that sufficient SNR can
be obtained from that single integration. This means
that the complex visibility can be determined directly
from single exposures. That in turn has a number of
benefits including phase on every baseline and elimi-
nating the need for squared visibility calculation with
the related bias subtraction. In-fact, the greatest loss
of signal-to-noise ratio in optical interferometry comes
from bias subtraction.

3. SIGNAL-TO-NOISE RATIO

If we imagine observations with visibility V and N pho-
tons per short observations, and M short observations,
then the SNR on the incoherent combination of those
frames is1

SNRi =
V 2

σV 2

=

√
M

4

NV 2

√

1 + NV 2

2

(1)

If instead those MN photons are observed in a single
frame (i.e. replace M with 1, and N with MN), then
the expression for the SNR becomes

SNRc =
1

4

MNV 2

√

1 + MNV 2

2

(2)

These two expressions are plotted in Figure 1 for as a
function of NV 2 for different values of M . For the same
values of M the red and green curves correspond to the
same total integration time. However the green curves
are the SNR of the incoherent averaging approach and
the red curves are the SNR of the coherent integration
approach.

We see that for small values of NV 2 the coherent
integration approach produces far better SNR than the
incoherent averaging approach, sometimes by orders of
magnitude.

Another way to look at this information is by esti-
mating the coherent integration time required to reach
a particular SNR. That is essentially plotting M in
equations 1 and 2. Figure 2 shows the required integra-
tion time for both incoherent averaging and coherent
integration. As an example, to measure NV 2 = 10−5

with a SNR = 10 would require 24 hours of integra-
tion time (perhaps of week of observing time) using co-
herent integration, but a thousand years of integration

Figure 2. Integration time for several different levels of required
SNR as a function of NV 2. The green curves are for incoherent
averaging and the red curves are for coherent integration.

time using incoherent averaging. This makes the differ-
ence between possible (with coherent integration) and
impossible (with incoherent averaging) observations.

4. PRACTICAL COHERENT

INTEGRATION

In a practical optical interferometer coherent integra-
tion requires that the fringes can be tracked and the
phase stabilized for the long integrations. There are sev-
eral aspects of this to be considered.

4.1. Real-time or post-processing

coherent integration

The first consideration is whether the coherent inte-
gration should take place in real time or during post
processing. In real time coherent integration the fringes
are stabilized by some external means such that fringes
can be integrated on a detector such as a CCD. The
phase reference must come from somewhere else, which
we will discuss later in this section.

The primary difference between real-time and post-
processing is in the timing of the phase information.
In real-time coherent integration the phase informa-
tion must be extrapolated from observations in the
past whereas for post-processing coherent integration
the phase information can be interpolated between the
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Figure 3. RMS prediction noise obtained from a Kalman filter
of the phase for a real-time system (in red), and a post-processing
system (in red). The horizontal axis is the number of terms in the
Kalman filter.2

past and the future. Figure 3 shows the RMS phase
error obtained from a Kalman filter. The red curve is
for real-time system error and the green curve is for
the post-processing system error. The horizontal axis is
the number of terms in the Kalman filter. With only
one term the two approaches are equal and use just
the phase measured at the time before the observation.
With two terms the real-time coherent integration does
linear extrapolation whereas the post-processing sys-
tem does linear interpolation for a greater reduction in
phase error.

4.2. Baseline bootstrapping

Bootstrapping is a crucial component to coherent inte-
gration. It is the means by which the phase is trans-
ferred from where it is measured to phase-reference the
photons being integrated. Even during post-processing
bootstrapping must be used, because the photons which
are being integrated may not be used to determine the
phase reference. If they are used the effect will be to
introduce a bias similar to the bias of the squared vis-
ibilities. The smaller the SNR of the frame, the larger
the bias will be.

The most well-known approach to bootstrapping is
baseline bootstrapping (Figure 4). In that case fringes
are tracked on two or more baselines and used to sta-

Figure 4. Illustration of a typical approach to baseline boot-
strapping. In this case fringes are tracked on the two green base-
lines to stabilize the fringes on the blue baseline.

bilize the fringes on a baseline which is composed of
them, using the closure relation,

φ3 = φ2 + φ1 (3)

where the φi is the phase on baseline i and the three
baselines form a closure triangle. This approach is most
often used when two shorter baselines with high SNR
or NV 2 are combined to stabilize fringes on a baseline
with small-amplitude fringes where coherent integra-
tion is needed in order to obtain required SNR in a
shorter amount of time.

4.3. Wavelength bootstrapping

In addition to baseline bootstrapping it is also possible
to use wavelength bootstrapping. In wavelength boot-
strapping fringes at one or more wavelengths is used
to track fringes at other wavelengths. We use the fact
that the fringe phase varies in some systematic way
with optical-path-difference (OPD) across wavelengths.
For example, in the optical, the phase variation across
wavelengths for given vacuum path, v, and air path, a,
delays can be written as1

θ =
2π [v + (n − 1) a]

λ
(4)

Because the index of refraction of air is so close to unity
we usually subtract a constant from it (for example 1)
and fold that into vacuum path delay to reduce the level
of degeneracy between the two components. Vacuum
path delay is a mis-match of the OPD in the vacuum
delay lines of the interferometer, whereas air path delay
can be caused by air pressure gradients along the phys-
ical baseline or residual air pressure in the delay lines
or elsewhere in the system. In-fact we go a step further
and subtract from (n − 1) its average value over the
tracking band-pass (approximately 450 nm or 550 nm
to 850 nm) to completely remove the degeneracy.

Proc. of SPIE Vol. 8445  844519-3



0.5

0.4

0.3

>

02

0.1

00
04 0.5 0.6 0.7 0.8 04 0.5 0.6 0.7 0.8 04 0.5 0.6 0.7 0.8 09

Wavelength (g.m)

Equation 4 can be used to determine v and a from
measured phases at a set or range of wavelengths, and
then used to extrapolate or interpolate the phase at
another set or range of wavelengths.

5. COHERENT INTEGRATION AT

NPOI

At the NPOI3 we use only post-processing coherent in-
tegration, and we used both wavelength and baseline
bootstrapping. Since we have photon counting detec-
tors the read-noise is zero and thus real-time coherent
integration will actually yield worse SNR. We model
the phase according to Equation 4. The cost function
for determining v and a is to maximize the expression4

∣
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∣

(5)

This optimization is carried out separately for the
many thousands of frames in each of hundreds of scans
in a night. To further increase the SNR of the determi-
nation of v and a we will sometimes combine multiple
consecutive frames (for example 3 to 10) to interpo-
late the values of v and a for the central frame.5 In
that case we model the time-variation of v and a as
low-order Legendre polynomials over the fixed inter-
val of a few frames. This is computationally expensive
and we have traditionally used supercomputers to do
this computation. Recently we have implemented and
tested algorithms for doing the optimization on General
Purpose Graphics Precessing Units (GPGPUs).6

Since we should not integrate on the same photons
that we track fringes on we will need to use wave-
length bootstrapping and leave out the channels being
integrated from the fringe-tracking. Figure 5 illustrates
this. In panel (a) we have divided the wavelength chan-
nels into two sets, the odd channels and the even chan-
nels. We can track fringes on the even channels and use
the determined values for a and v across all frames to
coherently integrated the odd channels, and vice versa
track fringes on the odd channels and use that to coher-
ently integrate the even channels. In panel (b) we leave
out one channel at a time and tracking fringes on the
remaining 16 channels, then use that information to co-
herently integrate the channel that was left out. This is
then repeated for every channel. Obviously the second
approach uses more photons for fringe-tracking, but it
comes at the cost of 15 times as much computation.

(a)

(b)

Figure 5. Illustration of two schemes for doing wavelength boot-
strapping at the NPOI in order to avoid tracking fringes on the
photons which are being coherently integrated. (a) a scheme in
which the channels are divided into two sets, the odd and even
channels. (b) a scheme in which the channels are divided into 16
(overlapping) sets, fringe-tracking on 15 channels to coherently
integrate the remaining channel.

Figure 6. Illustration of amplitude calibration when using fringe-
tracking of two high-SNR baselines to bootstrap a third baseline
of (typically) low SNR.1

6. AMPLITUDE CALIBRATION

When we track fringes the determined fringe phase, as
in equation 4 has finite SNR. That means that as we
coherently integrate the fringes are smeared, which re-
duces the visibility amplitude. In order to make use
of the coherently integrated visibilities we do, in most
cases, need to correct for this amplitude reduction.
More details of this are given in a companion paper.7

If the phase noise is a Gaussian then the visibility re-
duction is1

γ =

∫

f (θ) cos θ dθ = e−
σ
2

2 (6)

where f represent a normalized Gaussian. The phase
noise is not exactly Gaussian, but this description works
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well under some circumstances. One scheme which has
worked well is illustrated in Figure 6. A typical sce-
nario where we might need to calibrate coherently in-
tegrated visibilities involves the case where we track
fringes on two high-SNR baselines and baseline boot-
strap the phase to a third baseline which is then coher-
ently integrated,

σ2
3 = σ2

1 + σ2
2 (7)

We need to know the calibration factor of the third
baseline. In this case the two tracking baselines will
have sufficient SNR that the squared visibility, V 2,
which is not smeared, can be computed. We can then
measure the phase noise calibration factor as the ratio
of the incoherently averaged to coherently integrated
squared visibilities, compute the phase noise on the
tracking baselines, σ1, and σ2q, and bootstrap to ob-
tain the calibration factor on the bootstrapped base-
line. In Figure 6 we illustrate this with three high-SNR
baselines. Amplitude calibration is further discussed in
other papers.1, 7

7. DIAMETER MEASUREMENTS

With coherent integration the small amplitude visibil-
ities in the vicinity of nulls in the visibility curve have
better SNR than the squared visibility of the incoher-
ent averaging approach. We can thus determine the lo-
cation of the visibility null with greater precision when
we use coherently integrated visibilities. The visibility
null is a measure of the diameter of the star, we can
in-fact call it the equivalent uniform-disk diameter of
the star. We have been able to obtain very high pre-
cision with this approach, in a few cases better than
0.1% precision on diameters from only a few minutes
of observations. And these diameters are wavelength
dependent diameters where traditional analysis at the
NPOI often folds in observations at all wavelengths of
the spectrometer to improve SNR.

Recently we have also begun comparing these
wavelength-dependent diameter measurements to stel-
lar atmosphere models, in particular the Kurucz plane-
parallel models. Figure 7 shows a model-data compari-
son for γ Sge. To do the comparison we started with
the disk brightness distribution from the model and
then computed the visibility and measured the loca-
tion of the null. In that way we are simulating from the
model exactly the same thing that we are measuring.
While the overall slope is close in Figure 7, the spec-
tral features from the model are not reproduces in the
observations. Some of that difference is due to different

Figure 7. Diameter of γ Sge as a function of wavelength (blue
symbols with green error bars), linear fit of the diameters as a
function of wavelength (red curves, with uncertainty), and Ku-
rucz model atmosphere diameter (black curve). The best diame-
ters from the fit had a precision of approximately 0.1% between
0.75 and 0.76 µm.

wavelength bandwidths being used in the model and
observations, but that cannot account for all of the dif-
ference. Additional results are available in a companion
paper.8

8. IMAGING WITH COHERENT

INTEGRATION

With coherent integration imaging becomes simpler.
Coherently integrated visibilities are complex visibili-
ties with the phase. This makes them appropriate for
use in standard radio imaging packages such as AIPS or
the follow-on CASA. Coherently integrated visibilities
also obey Gaussian statistics instead of Poisson statis-
tics, which is assumed by the radio imaging packages.
On requirement, though, for imaging, is that that we
have knowledge of the absolute phase, not simply rel-
ative phase. But the absolute phase can be obtained
under the right circumstances.

Absolute phase can be determined on long resolv-
ing baselines which are bootstrapped from short non-
resolving baselines. On the short non-resolving base-
lines we know that the phase is zero, and thus any phase
obtained on the long baselines after bootstrapping will
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Figure 8. The NOI array layout to be used for this project.
Green dots represent currently used telescope positions, red dots
are locations to be commissioned for this project, and blue dots
are other unpopulated piers. The three colored lines, offset from
the telescope locations for clarity, represent the three six-station
bootstrapping chains.

be the absolute phase. More details on interferometric
imaging can be found in the paper by Schmitt et al.9

9. POSSIBLE FUTURE NPOI

IMAGING ARRAY

To make use of the coherent integration and imaging
capabilities that we have developed for NPOI over the
years we have proposed a imaging array for the NPOI.
To do the best imaging we should bootstrap long base-
lines from short baselines with as long a chain as pos-
sible. The NPOI can observe with 6 telescopes simul-
taneously so chains of 6 telescopes, or 5 baselines, is
ideal. In Figure 8 we illustrates such an array of three
5-baseline 6-telescope chains. Its main design drivers
were (1) to minimize new infrastructure and the num-
ber of piers that need to be commissioned, (2) to be a
compact array which does not require the commission-
ing of the long delay lines, (3) be able to switch con-
figuration between the three baselines of 6 telescopes
without moving any telescopes, (4) have the shortest
baselines be of approximately equal length. The array
in Figure 8 satisfies most of those criteria. Criterium 4
is not fully satisfied as not all the shortest baselines are
of equal length. This choice was made to minimize the
cost and infrastructure required to bring the array up.

Figure 9. (u, v) coverage for the layout shown in Figure 8, with
observations every 20 minutes during a 6-hour interval on each of
the three bootstrapping chains. The color coding corresponds to
the three chains in Figure 8. For convenience, the axes are indi-
cated in meters; the actual spatial frequency for a given channel
is B/λ.

Figure 10. Three targets to be analyzed and differentiated. A
limb-darkened disk (left), a limb-darkened disk with a small spot
(center), and a limb-darkened disk with a large spot (right). The
brightness of the spot is 3% of the brightness of the star, and the
diameters of the stars is approximately 10 mas.

Figure 9 shows the UV coverage for the array at
a single wavelength. This was produced by assuming
6 hours of observation on three different nights with
observations every 20 minutes. This produces probably
the most complete UV coverage of any optical interfer-
ometer to date, with large ratio of shortest to longest
baselines. Note that this is a single-wavelength UV cov-
erage. It can be compared with the much more spared
multi-wavelength UV coverage that was used to pro-
duce a image of an eclipsing disk with MIRC.10

10. SNR CONSIDERATIONS FOR

FUTURE NPOI IMAGING ARRAY

To illustrate the required SNR and need for coher-
ent integration let’s examine the observation of a few
simple targets with the array depicted in Figure 8.
Figure 10 shows three targets; a limb-darkened disk,
a limb-darkened disk with a small spot, and a limb-
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Figure 11. Visibilities for the three targets in Figure 10. The
red curve is for the limb-darkened disk without a spot, the green
curve for the limb-darkened disk with a small spot, and the blue
curve is for the limb-darkened disk with the large spot. The top
panel is for a wavelength of 850 nm, and the bottom is for a
wavelength of 450 nm.

darkened disk with a large spot. The spot adds 3% of
the brightness of the main star, and the diameters of
the targets are approximately 10 mas.

Figure 11 plots the visibilities for the three targets
in Figure 10. The top panels is at 850 nm wavelength
and the bottom at 450 nm wavelength. We see that in
order to be able to differentiate the models substan-
tially we need to look at the 4th lobe or beyond. The
longest tracking (short) baseline is 18 m which results
in a visibility amplitude of 0.2 in the first lobe at the
longer wavelength. This is enough to track fringes.

Now assuming that we are looking at a faint target,
the faintest 10 mas target that we can observe, what is
the required integration time to be able to resolve the
spot in the two cases, and distinguish the three cases?
With 5 baseline bootstrapping we reach a maximum
baseline length of 60 m which is the edge of the plot,
so we will be able to measure the 4th lobe and beyond.

For fringe-tracking let’s assume that we need SNR =
NV 2 = 10 to track fringes. for V = 0.2 that means that
we need at least 250 photons per 2 ms frame at the
NPOI. This is an integrated number of photons across
the 450-850 nm bandpass. With 32 channels that means
8 photons per channel. However almost all targets (and
system transparency) produce far fewer photons in the
blue than in the red. If we then assume 2 photons per
coherence time in the far blue channels where we must
resolve the spots. If we examine again Figure 11 we
can see that we would need roughly to get SNR = 10
on V = 0.01. This is the end result. We start with
NV 2 = 2 × 10−4 per frame in the blue channel. That

Figure 12. Phase noise for three different scenarios based on a
simulation. Dashed curves are phase noise from incoherent aver-
aging, whereas solid curves are phase noise from coherent integra-
tion. The red curves have two high-SNR baselines and one low-
SNR baseline, the green curves have one high-SNR baseline and
two low-SNR baselines, and the blue curves have three low-SNR
baselines. The flattening of the curves at less than 2 radians is
artificially due to phase wrapping. Correctly computed the phase
noise continues to increase steeply for the dashed green and blue
curves.4

comes from the two photons and the V = 0.01 value.

To find the required integration time we can exam-
ine again Figure 2. We find NV 2 = 2 × 10−4 on the
horizontal axis and read off the total number of frames
required, M , on the vertical axis for the required SNR
for both coherent integration and incoherent averag-
ing. With coherent integration the required SNR can
be achieved after an hour or so of integration, which
is still a very long integration time at the NPOI. With
incoherent averaging on the other hand more than a
year of integration time is required to reach the nec-
essary SNR. For high-resolution imaging the difference
between coherent integration and incoherent averaging
can be the difference between a doable observation and
a practically impossible observation.

11. PHASE IN IMAGING

Aside from the better SNR on the amplitude there is
another reason to use coherently integrated visibilities.
They produce better SNR on the phases as well. In in-
coherent averaging the phase can only be determined

Proc. of SPIE Vol. 8445  844519-7



with useful SNR from the triple products, V 3, of three
baselines. The triple product has the same SNR prob-
lems as the squared visibility, V 2, only worse because
of the higher order of the statistics. The SNR is much
worse if the visibility amplitude is small on at least two
of the baselines in the triangle, or more correctly, when
the single frame SNR on at least two baselines is very
small compared to unity.

Figure 12 compares the phase noise of coherently
computed (solid) and incoherently computed (dashed)
closure phases for three different scenarios. Red curves
are for two high-SNR baselines and one low-SNR base-
line, green curves are for one high-SNR baseline and two
low-SNR baselines, and the blue curves are for three
low-SNR baselines.

It is important to realize that when we work beyond
the second null there will invariably be triangles which
correspond to the green and blue low-SNR cases in Fig-
ure 12. This means longer integration times, in some
cases such as illustrated in section 10 much longer inte-
gration times, when using incoherently averaged closure
phases as opposed to either baseline phases or coher-
ently obtained closure phases.

12. CONCLUSION

In this paper we have covered the main aspects related
to coherent integration. We have described the theory
of coherent integration and where it is applied, and the
SNR gained from coherent integration. We have also
given a description of the practical implementation of
coherent integration at the NPOI. We outlined a case
for a imaging array that makes use of the NPOI in-
frastructure with minimum additional investment, and
showed that using such an array will allow sophisticated
imaging, but requires coherent integration to obtain the
required SNR.
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